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A numerical solution of the problem of extraction of a low-molecular-weight solvent from a spherical polymer 

product with allowance for shrinkage is suggested. The solution is based on passage from a variable region 

to a fixed one using a difference scheme of a special form developed for the convective-diffusion equation 

in which the convection and diffusion terms vanish with time. 

Problems of heat and mass transfer in bodies with movable phase boundaries are among the most difficult 

ones. In solving the problems it is necessary to determine a function of the position of the phase boundaries along 

with a function of the concentration of the desired component. These functions are determined by a system of 

nonlinear differential equations. Since in this case the use of exact methods encounters difficulties, in solving 

practical problems with a movable phase boundary numerical methods are used. 

A number of works are devoted to numerical methods of solving Stefan problems. Implicit difference 

methods with front capture at a grid node and with fractional steps of the fronts of an "extending grid" are a matter 

of sufficiently complete investigation [ 1 ]. 

In conformity with practical needs, in the majority of cases it is necessary to single out explicitly the moving 

boundaries. However, not every numerical method allows one to do this. For instance, algorithms based on an 

enthalpy formulation or "front smearing," determining the temperature field satisfactorily, give only a rough 

estimate of the position of the phase front. Voluminous literature, a brief survey of which is given, e.g., in [2 ], is 

devoted to methods with explicit singling-out of fronts. In developing this approach, recently several different 

versions of the method of finite elements with deformable calculation grids have been suggested for solution of 

problems in regions with unsteady boundaries. A common drawback of both these and'previously suggested finite- 

difference methods is the fact that different numerical schemes describe heat and mass transfer inside a one-phase 

region and the law of front motion, with the order of accuracy of the latter schemes (in the vicinity of the front) 

being, as a rule, lower than that of the former. Along with the deterioration of the accuracy the heterogeneity of 

the calculation schemes results in complication of the algorithm of solution. 

We suggest a numerical solution of the problem of solvent extraction from polymer particles in an aqueous 

medium involving solvent distillation out of the system. A special feature of the combined process under 

consideration is a simultaneous change in the composition of the interacting phases, their volumes, and the structure 

of the polymer material. 

For systems with polymer particles the kinetics of mass exchange is determined by intradiffusional transfer. 

Here, concentration fields of low-molecular-weight components (solvents, moisture) with rather large gradients in 

the surface layer are observed in the particles. 

The mathematical model of solvent extraction out of spherical polymer particles with allowance for their 

shrinkage can be written as [3 ] 
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C 2 (r, 0) = C2, 0 (r) , 0 < r < R (0 ) ,  (6) 

where C2 is the solvent concentrat ion inside a particle at a distance r from its center  at the instant r,  kg/m3;  C1 is 

the solvent concentrat ion in the liquid phase at the instant r,  kg/m3; D is the effective diffusion coefficient, m2/sec;  

D o and k are constants;  fl is the mass- t ransfer  coefficient, k g / (m  2-see); v is the velocity of particle shrinkage,  

m/see ;  R is the radius of the surface layer  of the particle, m. 

The  first relation of the system differs from the ordinary  diffusion equation in the term consti tut ing the 

velocity of particle shrinkage, which is calculated by formula (3) obtained in [3 ]. The  boundary  condit ion on the 

particle surface relates the mathematical  model of the process pertaining to a particle of the disperse phase to the 

description of the process of solvent extraction in the disperse phase as a whole. 

A distinctive feature of the model is the presence of a movable boundary ,  which requires special methods  

of solution. The  numerical  solution suggested is based on passage from a variable region to a fixed one [4 ] and 

the use of a difference scheme of a special form. 

The  transit ion to the fixed region can be accomplished by means of the t ransformat ion x = r / R ( O ,  C2(r,  

r) = C 2 ( x R  , v) ~ C ( x ,  r ) ,  0 <- x <- 1. 

With regard for the rules of differentiation of a composite function the diffusion equation for the new 

function C ( x ,  v) acquires the form 

0 c  
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After t ransformation and reduction of like terms we arrive at the relation 

O CC - 1 0 x 2 C v - x  C .  

Or R x  2 0 x  dr  R R Or 

Similarly, we pass to the new variable x in the formula for the shrinkage velocity: 

v ( x , r ) - _  1 (DOC] _ . 

C (x, R (T)) 3 dr 

Thus,  the system becomes 
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As a consequence of passing from the variable to the fixed region, the diffusion equation in system (7) 

becomes more complicated: the additional term f appears in its r ight-hand side and the diffusion and  convection 

terms of the equation are more complicated as well. Since the convection and diffusion terms vanish with time, it 

is necessary to use a difference scheme of a special type that ensures stable calculations. 

The scheme is constructed on a grid that is uniform along the space coordinate W h = {x i = ih, i = 
1, N + 1, (N + 1)h = 1} and nonuniform along the time coordinate W~ = {At y+~ = r j+1 - r]}, j - -  1, M. 

The system of equations in finite-difference form is written as 
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Fig. 1. Prof i le of the solvent concentration in a part icle as a funct ion of t ime 

(D O = 10-11; k = 2.5; C0 = 792 kg/m3):  1) T = 0; R = 5 .10 -4  m; C = 792 

kg/m3; 2) 26 m i n ;  4 . 5 8 . 1 0 - 4 ;  663 ;  3) 54;  4 . 1 - 1 0 - 4 ;  159;  4) 157;  

2 .67 .10-4 ;  10. R, mm; C, kg /m 3. 

To improve the accuracy and stability of the difference scheme, we int roduced the following quantities: 
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where S is any  real number.  

In the suggested  scheme the maximum principle is implemented,  which means  preservat ion  of such 

properties of the solution as the monotonici ty and nonnegativity of the solvent concentrat ion.  

In practice, the problem for the equation having different-scale coefficients in different  regions is often 

subdivided into several problems and then the solutions obtained are "sewn." This approach is reasonable  but  it 

possesses certain difficulties in the case of nonlinear  equations. On the other  hand,  its use is not always justified 

if there are numerical  methods that can be adapted to the relevant situations. A scheme with a choice of weighting 

parameters  for different  coefficients provides the possibility of solving the problem using one and the same algo- 

rithm. In the scheme suggested the weighting parameters  are chosen from the interval [ - 1 / 2 ,  + 1 / 2  ] in such a 

way that the scheme satisfies the maximum principle. 

The  scheme is a three- layer  one with respect to time and a three-point  one in relation to the space variable. 

It is known that for monotonic th ree- layer  schemes the restrictions on the accuracy exist. With the aid of a Four ier  

t ransformation with respect to x, r one could attain considerably bet ter  accuracy. Another  possibility lies in the 

use of multigrid algorithms. However, th ree- layer  schemes have their  own advantages: simplicity, a high rate of 

calculation, small expendi tures  of computer  memory.  Using three- layer  schemes, one can at tain an accuracy of 

2 - 3  orders  relative to a step. 

The  scheme used is implicit and is solved by the factorization method.  A linear analysis of the difference 

scheme shows that the scheme is absolutely stable. But since the system of equations is nonlinear ,  in choosing 
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the time step additional conditions are imposed, namely, at each time step the shrinkage velocity must be negative 

(v _< 0). 

In performing the program a graph of the lime variation of the total flow of solvent and a graph of its 

concentration distribution in the particles at each time step are made. Computer experiments make it possible to 
establish the influence of the main parameters on the kinetics of the process. 

Two parameters, k and DO, enter the formula for the diffusion coefficient. Calculations showed that with 

increasing D O the process of solvent extraction out of particles is enhanced. By the prescribed time r* the mass of 

the unextracted solvent in the particles is decreased. With increasing parameter k, the mass of the unextracted 

solvent in the particles increases by the fixed time r* (i.e., the process slows down). In Fig. 1 the change in the 

profile of the solvent concentration inside the particles with time is shown. It is seen that in the course of the process 

a thin surface layer is formed near the phase boundary. The solvent concentration in it is close to zero, while inside 

the particles a slight change in the concentration of this component is observed. As a result of implementation of 

the numerical solution suggested, it is possible to trace the quality of the product obtained in a computer experiment 

upon a change in the input characteristics and optimization of the process. The adequacy of the model was 

determined from the calculated and experimental kinetic curves of the total solvent" flow versus time using the 

method of least squares. The maximum deviation was 9.6%. 
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